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Abstract. We present a study of the superconducting pairing susceptibility KT (r) for a two-
dimensional isotropic system with a strong power-law divergence in the density of states N(ε) ∼
ε−1+1/b , b > 1. We show that the pair propagator has the scaling form KT (r) = rb−3F(T 1/br).
An anomalous short-range behaviour is found, leading straightforwardly to positive curvature in
the upper critical field, for b � 2, and to a zero-temperature divergence,Hc2 ∼ T −2+4/b , for b > 2.

Photoemission experiments on copper oxide superconductors [1] have provided direct evidence
for the existence of an extended saddle point in the CuO2 plane bands and, consequently, a
strong divergence in the density of states,N(ε) ∼ (ε− εvh)−α , for energies close to εvh. Some
authors have claimed that the high superconducting critical temperatures of the cuprates could
be explained by taking this divergence into account [2, 3].

One of the most surprising properties of these materials is the upper critical field, which
has been obtained in magnetoresistance experiments down to very low temperatures in the case
of overdoped Tl2Ba2CuO6+δ [4] and Bi2Sr2CuOy [5] and underdoped YBa2Cu3O7−δ [6]. A
very unusual curve forHc2(T ) is observed, with very strong positive curvature and no evidence
of saturation at low temperatures. This behaviour contrasts strongly with the weak-coupling
BCS result [7] which predicts an approximately parabolic shape for the Hc2-curve.

Recently, Abrikosov has proposed [8] that these anomalous Hc2-curves reflect a dimens-
ional crossover to quasi-one-dimensional superconductivity due to the presence of flat regions
in the energy dispersion—that is, extended saddle points. In Abrikosov’s approach, the two
extended saddle points in the energy dispersion are replaced by two one-dimensional linear
energy dispersions ε1(qx) = v1qx and ε2(qy) = v2qy . This model is equivalent to a system of
two transverse chains and, in this case, the density of states completely loses its strong energy
dependence. Furthermore, it is not surprising that he finds a dimensional crossover in Hc2. In
this paper, we argue that these curves reflect not a dimensional crossover, but the strong energy
dependence of the density of states which results from the presence of these extended saddle
points. In the following, we present a study of the superconducting pairing susceptibility for an
isotropic two-dimensional system with a strong power-law divergence in the density of states.
As shown by Gorkov [7], this two-particle correlation function determines the shape of the
superconducting transition Hc2(T ) of a type-II superconductor.

The superconducting transition is characterized by the vanishing of the gap function
�(r, r′), defined as �(r, r′) = V (r − r′)〈ψ↓(r)ψ↑(r′)〉. In the particular case of a local
pairing interaction, V (r − r′) = gδ(r − r′), we obtain as usual the s-wave gap function,
�(r, r′) = �(r)δ(r − r′). In the following, h̄ = c = e = kB = 1. In the vicinity of the
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superconducting transition curve, the gap parameter is small and a perturbation expansion in
powers of � leads to the semi-classical linearized gap equation [7, 9]

�(r) = g

∫
dr′ Kβ(r′ − r)ei 2A(r)·(r′−r)�(r′) (1)

whereKβ(r) is the fermion pair propagator in real space for a given temperature T = 1/β, in
the absence of the external field and the pairing interaction g, and is defined as

Kβ(r
′, r) = 1

β

∑
ω

G−ω(r′, r)Gω(r′, r) (2)

where the Matsubara Green’s function Gω describes the normal state in the absence of a
magnetic field. Using Kramers–Kronig relations, Kβ(r) can be rewritten as

Kβ(r) = 2

π

∫
dω tanh(βω/2)A(r, ω)B(r,−ω) (3)

with A(k, ω) = ImGR(k, ω) and B(k, ω) = ReGR(k, ω) where GR(k, ω) is the retarded
Green’s function in the absence of a magnetic field and pairing potential. A(r, ω) and B(r, ω)
are the respective Fourier transforms. A non-local V (r−r′)may lead to a d-wave gap solution
and a slightly modified gap equation. One can show that the upper critical field probes the
behaviour of the Cooper pair centre of mass and the internal symmetry of the gap function is
irrelevant as long as the thermal and magnetic lengths are much larger than the interaction range.

In a bidimensional system, a Van Hove singularity (VHS) in the density of states results
usually from the presence of a saddle point in the energy dispersion ε(k). In the case of
an extended saddle point, ε(q) ∼ qnx − qmy , where q = k − kvh, this leads to a power-law
divergence in the density of states N(ε) ∼ ε−1+1/n+1/m. Such a form for the extended saddle
point is not only indicated by the direct probing of the energy dispersion using the angle-
resolved photoemission technique [1], but also by numerical work on the Hubbard model. For
instance, quantum Monte Carlo work by Imada and collaboraters [10] on the Hubbard model
has found an extended saddle point with a quartic qy-dependence at (0, π). The effect of
such a divergence on the pairing susceptibility and the superconducting phase diagram is the
subject of this paper. Clearly, a system with a saddle point is not isotropic. However, in order
to simplify the problem, we adopt the isotropic dispersion relation:

ε(k)− εvh = a sgn(q)|q|b (4)

where q = k − kvh. The influence of anisotropy in the semi-classical upper critical field is
well studied [11,12]. Anisotropic two-dimensional systems have typically open warped Fermi
surfaces or elliptical closed Fermi surfaces in the case of small particle number. For a system
with an elliptical Fermi surface, in the case of a transverse magnetic field, it is simple to show
that the normalized upper critical field follows the parabolic-like BCS curve [13]. For an open
warped Fermi surface, the behaviour of the Hc2-curve is determined by the relation between
Tc0 and the small ty-modulation of the Fermi surface [12,13]. If ty 
 Tc0, Hc2 will diverge at
a finite temperature, reflecting a reduction of the effective dimension of our system induced by
the magnetic field [11,12]. However, if ty � Tc0, a BCS-like parabolicHc2-curve is obtained.
A reduction of ty enhances the zero-temperature critical field, Hc0, relatively to the zero-field
critical temperature, Tc0, but, as long as the relation is valid, the reduced upper critical field
(Hc2/Hc0 as a function of T/Tc0) remains unchanged. One may therefore conclude that,
unless a dimensional crossover is present, the reduced upper critical field shows very little
sensitivity to anisotropy. Another important point is that the contribution to superconductivity
of the extended saddle-point region is much larger than the contribution of the other regions
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of the Fermi surface, which can therefore be neglected. These facts motivate the choice of an
isotropic model for our study.

Note that, for quasi-2D systems and magnetic fields applied along the planes, the
dimensional crossover is from 3D to 2D. In the case of transverse fields, the crossover is from
quasi-2D to quasi-1D superconductivity. One should note, however, that the Hc2-divergence
results from a mean-field analysis and fluctuations modify this behaviour greatly in the last
case. In fact, saturation should arise at low temperatures due to fluctuations, reflecting the well
known impossibility of a superconducting state in one dimension. Furthermore, as recently
shown by Lebed and Yamaji [12], saturation should also be observed due to Pauli pair breaking.
Therefore, it seems unlikely that a dimensional crossover could explain results obtained by
Mackenzie and others [4, 5].

We assume that the VHS is pinned at the Fermi level—that is, kF = kvh. We will comment
on the pinning assumption at the end of the paper. The density of states for the above model
is N(ε) ∼ a−1/bb−1(ε − εvh)

1/b−1. Let us assume for now that b is an odd integer.
For this simple model, we can compute the spectral function

A(r, ω) = − 1

2ab

( |ω|
a

)1/b−1
√

2kF
πr

cos

[
r

(( |ω|
a

)1/b

sgn(ω) + kf

)
− π

4

]
(5)

and the retarded Green’s function GR(r, ω), since GR(q, ω) is a meromorphic function in
the complex q-plane. Note that A(r, ω) = ImGR(r, ω) and B(r, ω) = ReGR(r, ω). After
some lengthy but straightforward algebra, one obtains the following expression for the pair
propagator:

Kβ(r) = rb−3F

[(
βa

2

)1/b/
r

]
(6)

with

F [X] = 2kF
π2

1

ab

∫ ∞

0
dω

tanh[(ωX)b]

ωb−1

{
1

2
sin(2ω)

+
(b−1)/2∑
n=1

e−ω sin([2π/b]n) sin

[
w

(
1 + cos

(
2π

b
n

))
+

2π

b
n

]}
. (7)

When X � 1, F [X] ∼ Xb−2, and for X 
 1, the function is exponentially small. Note that
the thermal length is given by ξT ∼ (a/T )1/b. The pair propagator for distances smaller that
the thermal length is approximately given byKT (r) ∼ r−1T −1+2/b and, therefore, it diverges as
the temperature goes to zero. We will show that this will lead to a zero-temperature divergence
in the upper critical field. Note that no Debye-like frequency cut-off was introduced in the
previous integral. This procedure is valid as long as the temperature provides a smaller cut-off
in the integrand—that is, T 1/b 
 ωc. This reflects the well known reduction of the isotope
effect in the Van Hove scenario [15].

The zero-field critical temperature is obtained from the equation

1/g = kF

π

1

a1/bb

∫ ∞

0
dω tanh(βω/2)ω1/b−2 (8)

which leads to

Tc0 ∼
[
kF

π

a−1/b

b − 1
g

]b/(b−1)

. (9)

This result and the role of the frequency cut-off can be qualitatively understood using the
usual BCS relation for the critical temperature Tc0 ∼ ωce−1/〈N(ε)〉Tc0g , where 〈N(ε)〉Tc0 is the
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thermally averaged density of states

〈N(ε)〉T ∼
∫

dε (∂f/∂ε)N(ε)

and f is the Fermi distribution function. In this case, 〈N(ε)〉Tc0 ∼ a−1/bb−1T
1/b−1
c0 and there-

fore ln(ωc/Tc0)T
1/b−1
c0 ∼ 1/g. In the weak-coupling limit, one can neglect the logarithmic

correction and, thus, the above dependence for the critical temperature is reproduced. In the
usual case of an extended saddle point, this broadening argument leads correctly to a transition
temperature [16,17] Tc0 ∝ g2. The enhancement of the critical temperature is clearly bounded
by the equivalent of the Debye temperature in this problem—that is, Tlim ∼ ωD , where ωD is
our cut-off in frequency. The energy dispersion as given by equation (4) may also be limited
to an energy range ωc < ωD and in that case Tlim ∼ ωDe−1/〈N(ε)〉ωc g . This dependence on
the extent of the anomalous energy dispersion could offer an explanation for the low critical
temperatures of, for example, Bi2201 [18] and Sr2RuO4 [19]. Photoemission experiments on
these materials [18,19] have found a VHS near the Fermi level, but also a smaller extent of the
flat regions in the energy dispersion. A similar thermal broadening argument can be applied
to the zero-temperature slope of the Hc2-curve.

The analytical determination of the upper critical curve for the complete temperature range
is a difficult task. So, we obtain the Hc2-curves by numerical solution of the gap equation and
study its behaviour analytically only at low temperatures or close toTc. For numerical purposes,
it is more convenient to work with the gap function in a mixed representation. If one chooses
the Landau gauge A = (0, Hx, 0) and makes use of the degeneracy of the gap function, one
can rewrite equation (1) as

�̃(x) = g

∫
dx ′ K̃β[x ′ − x,−H(x + x ′)]�̃(x ′) (10)

where �̃(x) is the y-integrated gap function and K̃β(x, ky) is the Fourier transform ofKβ(x, y).
At zero temperature, the gap equation simplifies to

�(r) ∼ g

∫
dr′ T

1−2/b

|r ′ − r|eiφ(r′/
√
H,r/

√
H)�(r′) (11)

where φ is the magnetic phase acquired by the Cooper pair, which is independent of the
magnetic field if r is written in magnetic length units. Note that this form for the gap
equation is independent of our gauge choice. The numerical gap solutions show a perfect
scaling �̃(x) = F(x/

√
H)—that is, all gap solutions fall onto a universal Gaussian curve

(see figure 2), if the x-axis unit is the magnetic length and, therefore, with the variable change
x̃ = x/

√
H in the previous equation, the gap function becomes independent of H and we

obtain the low-temperature scaling of the upper critical field, Hc2(T ) ∼ T −2+4/b.
In figure 1, Hc2-curves for several values of b, obtained numerically from equation (10),

are displayed. These curves are characterized by a strong divergence of the upper critical field
as T → 0 and linear behaviour close to Tc0. In the inset, the low-temperature scaling is clearly
observed on a log–log scale. This behaviour is clearly distinct from a dimensional crossover
in Hc2 which would lead to a divergence even on a log–log scale.

While equation (6) for the pair propagator was derived for odd integer b, we believe that
this equation is qualitatively correct for any value of b � 1. Clearly, equation (5) for the
spectral function is valid for any b and one can show that the pair propagator for b > 1 will
have the same qualitative short- and long-range behaviour as that given by equation (6). For
b = 1, with the introduction of a cut-off, we recover the usual BCS results and, in particular,
Hc0 ∼ T 2

c0. For 1 � b < 2, F [X] ∼ constant if X 
 1 and, therefore, the pair propagator
shows a different short-range dependence, KT (r) ∼ rb−3.
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Figure 1. Hc2-curves for b = 3, 5 and 7, obtained numerically from equation (10). Inset: the same
curves on a logarithmic scale, showing clearly the low-temperature power-law behaviour.

Figure 2. The numerically obtained gap solution at different points of the transition curve shown
in the inset (b = 5). All solutions are Gaussian.

The pair propagator does not diverge as we decrease the temperature and, with a scaling
argument, we can show that now the zero-temperature critical field is finite, 1/g ∼ H

(1−b)/2
c0

and, thus, Hc0 ∼ T
2/b
c0 .



9058 R G Dias

The low-temperature dependence ofHc2 can be obtained by expanding the pair propagator
in powers of T :

[KT (r)−K0(r)]/r
b−3 ∼ −(rT 1/b)c (12)

and, following Gorkov [7], one obtains Hc2(T )−Hc2(0) ∼ −T 2c/b. Curiously, a power-law
low-temperature dependence of Hc2 has also been suggested, by Kotliar and Varma [20], as a
consequence of a zero-temperature critical point. This dependence, in our picture, results from
the scaling form of the pair propagator as given by equation (6), but the value of c depends
on the specific form of the integrand of equation (7). One knows that when b → 1, the usual
expression for the pair propagator should be recovered, which is the one given by equations (6)
and (7) but with the sine function in the integrand [9, 21]. For b > 2, the exponential term in
equation (7) dominates and the sine contribution becomes irrelevant. Therefore, when b → 1,
the low-temperature behaviour should be determined by the sine term and, as b goes away
from 1, the exponential term should take over. With this assumption, c can be determined and
the result is c = (2 − b)/2, when b ∼ 2, and c = (3 − b)/2, when b → 1.

The results obtained up to now can be collected into a equation similar to the usual one [21]:

1/g =
∫

dr Kβ(r)e
−r2H

with a qualitative pair susceptibility given by

KT (r) = 1

r3−b
(rT 1/b)c

sinh[(rT 1/b)d ]
(13)

with c = 0 and d = b − 2, if b > 2. If 1 � b < 2, c = d with c having the behaviour
described above in order to reproduce the low-temperature dependence of the upper critical
field. In particular, c = 1 if b = 1 and the usual BCS equation is recovered [9, 21]. If
b → 2, c → 0. In figure 3, Hc2-curves obtained with this qualitative kernel are displayed. A
drastic transformation from conventional parabolic-like curves (obtained with c = (3 − b)/2)
to curves with strong positive curvature (obtained with c = (2 − b)/2) is observed as the
low-temperature exponent 2c/b goes from 2 to 0.

In figure 3, the experimentalHc2-points obtained by Mackenzie et al for Tl2Ba2CuO6+δ [4]
are also displayed and fitted with our qualitativeHc2-curves. Note that this is a one-parameter
fit (c = (2 − b)/2), since the normalized curves do not depend on the coupling constant g. An
impressive agreement is observed for 2c/b = 0.45, which, according to the picture presented
in this paper, implies that the density of states diverges asN(ε) ∼ ε−0.28. Most photoemission
experiments have found saddle points with quadratic dispersion along one direction and much
flatter (higher-power dependence) behaviour along the other (transverse) direction, indicating
therefore a divergence exponent α smaller than 1/2. In the case of the saddle point obtained
in [17], a good fit is obtained with a quartic dependence, leading to α ≈ 0.25 which agrees
reasonably well with the value extracted from the experimental Hc2-curve. We emphasize
that for a given exponent α, the normalized Hc2-curve is as universal as the usual BCS
curve [7] (α = 0). A suggestion of some sort of universality is indeed observed in figure 4
of reference [6], where Hc2-curves for two different materials, YBa2(Cu0.97Zn0.03)3O7−δ and
Tl2Ba2CuO6+δ , apparently fall onto the same curve in a plot of reducedHc2(T ) versus reduced
temperature. Such universalHc2-behaviour is not observed in the case of a simple saddle point
which leads to a weak logarithmic divergence in the density of states [14]. In this case, Hc2
depends on the coupling constant g and shows upward curvature which becomes stronger as
g is decreased. Note that Hc0 and Tc0 have a weaker enhancement in this case [14], with log-
squared relations to the inverse of the coupling constant g, while, for the extended singularity,
power-law relations have been obtained.
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Figure 3. The qualitative normalizedHc2-curves for 1 < b < 2. As the dispersion relation changes
from linear to quadratic, the upper critical curve changes from the usual BCS curve to a curve with
strong positive curvature.

It has been assumed throughout the paper that the VHS was pinned at the Fermi level.
It has been shown in reference [14] that a deviation from the Fermi level of the VHS leads
to Hc2-saturation at low temperature, the temperature range of this region being proportional
to the energy difference, kBTcross ∼ EF − Evh. However, this has not been observed in the
experimental Hc2-curves [4, 6], even though the respective samples are in the overdoped or
underdoped regime. According to the Van Hove scenario, one should expect a certain deviation
of the VHS from the Fermi level in these regimes in order to account for the decrease of the
zero-field critical temperature. However, it is possible that (at least, in some interval of the
doping range) the reduction of the critical temperature results not from the deviation of the
VHS from the Fermi level, but, instead, from the weakening of the VHS due to a reduction
of the extent of the saddle point as suggested by King et al [18]. Photoemission experiments
on YBa2Cu3O6.9 [22], YBa2Cu3O6.5 and YBa2Cu3O6.3 [23] support this picture, since they
report a clear doping independence of the pinning of the Fermi level at the VHS. Moreover, this
doping independence of the pinning is predicted by many numerical studies, from slave-boson
calculations [24, 25] to renormalization group calculations [26].

In conclusion, we have studied the effect of a power-law divergence of the density of
states at the Fermi level N(ε) ∼ ε−α on the upper critical field of a clean isotropic weak-
coupling superconductor. We have shown that for a weak divergence (α less than 1/2),
the zero-temperature critical field is finite, but strong positive curvature appears in Hc2 as
α approaches 1/2. For a stronger divergence (α larger than 1/2), Hc2(T ) has a power-law
divergence at T = 0. A very good one-parameter fit was obtained to the experimental results
given by Mackenzie et al [4]. According to the picture described in this paper, the anomalous
Hc2-behaviour reflects the short-range enhancement of the pair propagator and the unusual
temperature dependence of the thermal length which result from the existence of a strong
divergence of the density of states at the Fermi level.
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